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large, which is to be expected from the essential simi
larity in the gross features of the spectra of these two 
modifications. Such a similarity was also noted between 
cubic and hexagonal modifications of SiC by Spitzer, 
Kleinman, and Walsh.22 

22 W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 
127 (1959); W. G. Spitzer, D. A. Kleinman, and C. J. Frosch, 
ibid. 113, 133 (1959). 

1. INTRODUCTION 

WHEN a beam of electrons is directed against a 
thick solid target, many of the electrons stop 

in the target but some are scattered back out. These 
are the backscattered electrons.1 Over the past few 
years a considerable amount of experimental infor
mation has been collected 2~~6 and from an empirical 
point of view there now exists a fairly complete picture 
of the phenomenon. On the other hand, attempts at a 
theoretical interpretation of the data7-10 have been 
based on rather severe approximations and have met 
with only limited success. The purpose of this paper is 
to present a reformulation of the problem which cir
cumvents many, but by no means all of the difficulties 
which one encounters in trying to treat backscattering 
through the usual methods of multiple-scattering 
theory. 

Mathematically, the problem can be formulated as 

* Work was performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Present address: Department of Physics, California Institute 
of Technology, Pasadena, California. 

1 Secondary electrons are also emitted. Experimentally, it is 
usually assumed that an electron emerging from the target with 
an energy of more than 50 eV has been backscattered. 

2 E. Stenglass, Phys. Rev. 95, 345 (1954). 
3 P. Palluel, Compt. Rend. 224, 1492 (1947). 
4 H. Kanter, Ann. Physik 20, 144 (1957). 
6 K. Wright and J. Trump, J. Appl. Phys. 33, 687 (1962). 
6 H. Kulenkampff and K. Riittiger, Z. Physik 137, 426 (1954). 
7 H. Bethe, Ann. Physik 5, 325 (1940). 
8 G. Archard, J. Appl. Phys. 32, 1505 (1961). 
9 T . Everhart, J. Appl. Phys. 31, 1483 (1960). 
10 W. Bothe, Z. Naturforsch. 4a, 542 (1949). 
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follows. Given a uniform, monoenergetic flux of elec
trons incident on a semi-infinite block of scattering 
material, what is the energy and angular distribution 
of electrons that are scattered back out? In order to 
solve this problem using standard multiple-scattering 
theory, one must find the distribution function for the 
electrons at each point within the block. A more 
economical method would be to obtain an equation for 
the distribution of backscattered electrons alone, 
thereby freeing ourselves from the unnecessary task of 
finding the distribution within the block. In the fol
lowing section we will derive an integral equation for 
the backscattering coefficient as a function of energy 
and angle. An application of this equation to the energy 
dependence of the backscattering coefficient is given in 
Sec. 3. Section 4 contains a critical analysis of some 
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approximate methods along with some interesting 
numerical results based on the assumption that small-
angle scattering is unimportant. Finally, in Sec. 5 we 
discuss the possibility of more extensive calculations. 

2. THE BASIC EQUATION 

Given a uniform flux of electrons incident on a plane 
surface (Fig. 1), we define the backscattering coefficient 
Rtobe 

outgoing flux per unit solid angle per unit energy interval 
R (n,E; n',E') = — 

incident flux 
(i) 

where E— incident energy, E' = outgoing energy, 
n=unit vector antiparallel to the incoming direction, 
n' = unit vector parallel to the outgoing direction. One 
will note that the quantity measured in the laboratory 
is not R, but R(nyE,nfE') seed cos0', where 6 is the 
angle between the n and the normal to the surface. 
This is due to the fact that we have assumed a uniform, 
infinitely broad, incoming beam whereas in the labo
ratory the incoming beam is confined to a thin pencil. 

To derive an integral equation for R, we will follow 
a chain of thought that has proven to be very fruitful 
in similar contexts and generally goes under the title of 
"invariant imbedding." Our application of these ideas 
will be of the most rudimentary nature. For a thorough 
exposition of this manner of thinking and its many 
applications, the interested reader is referred to the 
review article of Bellman, Kalaba, and Wing.11 The 
basic idea is very simple. Suppose we add a thin layer 
of the same material to the surface of our target thereby 
increasing its thickness by an amount At. Since we have 
assumed that our target was already infinitely thick, 
the backscattering coefficient must remain unchanged. 
If we take the new layer to be differentially thin, this 
simple device will lead to an integral equation for R. 

(c) (d) 

FIG. 2. New paths created by increasing the thickness of the 
target. The dots represent a single elastic or inelastic collision in 
the new layer, and the broken lines indicate backscattering in the 
original target. 

11 R. Bellman, R. Kalaba, and G. Wing, J. Math. Phys. 1, 280 
(1960). ' ' 

As notational difficulties would tend to obscure the 
basic simplicity of the argument, we will not follow the 
derivation in mathematical detail. The reader, if so 
inclined, can easily fill in the gaps. 

Apart from normalization factors, the backscattering 
coefficient R(n}E;n',E') is imply the probability that 
an electron will follow any path which can lead to 
backscattering from the state (n,E) to the state (n',E'). 
By adding a layer of scattering material we have 
created some new paths. These are the paths where the 
electron makes a collision, either elastic or inelastic, 
somewhere in the new layer. They are illustrated 
schematically in Fig. 2. Note that we need not consider 
paths where the electron makes two or more collisions 
in the added layer since the probability that an electron 
will follow one of these paths is of order (A/)2. To 
calculate the increase in R due to fact that we have 
added some extra paths, we must add up the proba
bilities that an electron will follow each of the new 
paths. Referring to Fig. 2 we see that the sum over 
paths of type (a) is simply a normalization factor times 
the atomic cross section. Again, apart from normali
zation factors, the paths of type (b) can be summed 
by multiplying the atomic cross section for scattering 
from the state (E,n) to a state (E",n") times the 
"original" backscattering coefficient R(n",E"; n',E') 
and summing over all intermediate states (ji,r,En). 
Paths of type (c) are treated similarly. The sum over 
paths of type (d) contains the atomic cross section 
times the square of the "original" backscattering co
efficient and a double summation over intermediate 
states. 

Since the total variation in R must be zero, the 
increase in probability of backscattering due to the 
increased number of available paths must be exactly 
cancelled by a decrease in the probability that an 
electron will follow one of the old paths; i.e., a path 
along which it makes no collisions in the added layer. 
It is immediately obvious that the net probability that 
an electron will follow one of the original paths is 
decreased since the probability that an electron will 
pass twice through the new layer without making a 
collision is less than one. More specifically, the reduction 
in the probability that an electron will follow one of the 
old paths is simply the "original" backscattering co
efficient times the total probability that the electron 
will make a collision as it passes twice through the new 
layer, 
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At this point we make the usual assumption that 
inelastic collisions with the atomic electrons contribute 
only to energy loss and do not change the incident 
electrons' direction of motion. This simplification is not 
in principle necessary, but it is a very good approxi
mation and has the pleasant feature that the cross 
sections for angular deflection and energy loss become 
independent. Combining this assumption with the 
analysis of the preceding paragraphs, one finds that R 
satisfies the integral equation 

Z(aT(E)+a)T(E)) secd+(aT(Ef)+o)T(Ef)) sec<9'] 

X * ( n , E ; n ' , E ' ) 
= <r(E, - n - n ' ) secd'5(E-E') 

+ J [co (E,E") secOR (n ,E"; n',E') 
J E' 

+co (£" ,£ ' ) sec0'£(n,£; n',E")]<*£" 

+ J [o-(E,n.n , /) sec0"R(n",E; n',E') 

+a(E',n"-ri) sec0'i?(n,£; n" ,E ' ) ]dn" 

+ f f [R(n,E;n",E")a(E", -n" .n '") 

Xsec0" '£ (n" ' ,£" ; ri,E')dE"dn"dtim, (2) 

where <r(E, cos@) is the atomic cross section for elastic 
scattering through an angle ©, oo(E,Ef) is the atomic 
cross section for an inelastic collision leading to an 
energy loss E—E'y (rT(E) and <or(E) are the total 
elastic and inelastic cross sections, sec0 is the secant 
of the angle between n and the normal, and the angular 
integrations run over the hemisphere of unit vectors 
pointing out of the target. The first term on the right 
of Eq. (2) is the probability that an electron will follow 
one of the new paths of type (a). In accord with our 
assumption that inelastic collisions do not cause angular 
deflection, we have included only the elastic cross 
section in this term. The two single integrals are the 
sum over paths of types (b) and (c) and the triple 
integral is the sum over paths of type (d). Finally, the 
left-hand side is the net reduction in the probability 
that an electron will follow one of the old paths. The 
geometrical factors sec0 are the usual ones which arise 
because the effective volume of the layer available for 
scattering into a direction n is proportional to At seed. 
In writing down Eq. (2) we have omitted a factor 
At X (number of atoms per unit volume) which multi
plies each term as it is of no consequence. Physically, 
this means that backscattering is independent of the 
density of the scattering material. 

For future purposes it is convenient to write Eq. (2) 

in the form 

f f£8(E-E")a>T(E)-o>(E,E")'] 

J E' J 

Xsec6"8(n-n")R(n",E"; n',E')dE"dn" 

+f JR(n,E;n",E")l5(E"-E')MEr. 
-co(£",£ ' ) ] sec6'8(n'-ri')dE"dn" 

= <r(E, - n - n ' ) sec6'8(E-E') 

+ [ / " a X ^ n . n ' O - S C n - n ' y ^ ) ] 
J E' J 

Xsec6"8(E-E")R(n",E"; ri,E')~]dE"dn" 

+ f !{_R(n,E;n",E")[<j{E",n'-n") 
J E' J 

- 6 ( n , - n , , ) c r r ( E , / ) ] sec6'5(E"-E')2dE"dn" 

+f f JJ*(n,£;n",E") 
X<r(E", - n " . n ' " ) s e c 0 " ' 5 ( £ " - £ " ' ) 

X i? (n ' " , £ ' " ; W,E,)dE"dE"'dti'drt", (3) 

where 5(n—n') is the delta function on the unit sphere. 
In the remaining sections of this paper we will restrict 

ourselves to electron energies that are nonrelativistic 
but large compared to the binding energy of the atomic 
electrons. This is a permissible limitation since from the 
form of Eq. (2) it is apparent that for a given maximum 
value of E and minimum value of E', R does not depend 
on reflection coefficients whose energy indices lie outside 
this range. Under these conditions the elastic cross 
section is simply the Rutherford cross section12 

cr(E, cos©) = 
Z V 1 

4E2 ( 1 - C O S @ + T ) 2 
(4) 

where y is the screening parameter. The inelastic cross 
section can be sufficiently well approximated by13 

ire*Z 1 
co(E,E0 = , € m a x > E - £ ' > € m i n (5) 

E (E-EJ 

where emin and emax are the minimum and maximum 
energy losses.13 For our purposes it is sufficient to know 
that €max is proportional to E and that the usual range-

12 N. Mott and H. Massey, Theory of A tomic Collisions (Oxford 
University Press, New York, 1949). 

" M. Livingston and H. Bet he, Rev. Mod. Phys. 2, 245 (1937). 
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energy relation is given by12 

rE dE lirZe* /2E\ 
/ u{E,Ef){E-Ef)dE'= = l n f — J , (6) 

Jo dx E \ I / 

where the unit of length has been chosen so that there 
is one atom per unit volume and / is a mean ionization 
potential. 

In writing down Eq. (3) we have placed the factors 
in a particular order to bring out the fact that the 
integrations over energy and angle can be considered 
as matrix multiplications. This observation leads to a 
more economical notation and allows us to use the 
methods of matrix analysis to manipulate the equation. 
We consider i?(n,E; n ' ,£ ' ) as a matrix with two sets 
of indices, n and E, and define the following matrices 

5 5 =4(e 4 Z 2 ) -V(£, - n - n ' ) s ec0 'S (£ -£ ' ) , (7a) 

5i, = 4(e4Z2)-1[o-(E,n.n ,)-5(n-n ,)o- r(E)] 

X s e c 0 ' 5 ( £ - E ' ) , (7b) 

W=(2Tre±Z)-l[b(E-E')o)T{E)-o}(E,E')~\ 

Xsec0 '5(n-n ' ) . (7c) 

Equation (2) can now be written as 

WR+RW= (Z/8TT) (SB+SFR+RSF+RSBR) . (8) 

Owing to the fact that none of the matrices SB, SF, 
and W commute, Eq. (8) cannot be solved explicitly. 
We can, however, put it in a more advantageous form. 
I t is a standard theorem of matrix calculus14 that a 
formal solution to (8) is given by 

Z r00 

R=— / exp(-Wt)(SB+SFR+RSF+RSBR) 
ST Jo 

Xexp(-Wt)dt, (9) 

which holds provided that the integral converges. To 
see that the integral does converge one need only con
sider the physical meaning of the exponentials. Writing 
the matrix exp(—tW) in the form 

exp(-tW) = P(E}E'; t sec0)S(n-n ') , (10) 

we find that P satisfies the differential equation and 
boundary condition 

d 
P(£ ,£ ' ; / s ec0 ) 

d(t seed) 

= (2weiZ)-lf [o>{E,E")-b{E-E")o>T{E)~] (11) 

XP(E",E',tsec6)dE", 

P ( E , E / ; 0 ) = 5 ( E - £ / ) , 

from which one easily sees that P(EyE'; t sec0) is simply 
the probability that an electron will suffer an energy 

14 R. Bellman, Introduction to Matrix Analysis (McGraw-Hill 
Book Company, Inc., New York, 1960). 

loss E—Er while traversing a path of length t sec0 
where the unit of distance is chosen such that 2xe4Z 
X (number of atoms per unit volume) = 1. Now for 
fixed E and E', P tends rapidly to zero for large t and 
the integral converges. Landau15 has given explicit 
expressions for the function P so we now have an 
equation that can, at least in principle, be solved by 
successive approximations. 

Equations (8) and (9), being quadratic in R, most 
likely have more than one solution. Obviously the 
physically interesting solution has the property that, 
considered as a function of Z, it tends smoothly to zero 
for small Z. We will now give a heuristic proof that 
Eq. (9) has a unique solution with this property. 
Strictly speaking, the atomic screening radius y and 
the minimum energy loss emin are functions of Z. In 
the next section, however, we will see that the de
pendence of R on these quantities is rather unimportant 
and to a good approximation we can take the matrices 
SF, SB, and W to be independent of Z. With this 
assumption one can easily see that Eq. (9) has a unique 
formal solution as a power series in Z. To see that this 
series is, in fact, convergent we need only observe that 
an expansion of R in powers of Z corresponds exactly 
to an expansion in the number of times an individual 
electron is elastically scattered before leaving the target. 
Now a large number of scatterings requires a long time 
spent in the target, but for a given energy loss very long 
paths are highly improbable. Therefore, for fixed E—E', 
the coefficient of ZN must tend to zero for large N and 
the series converges. Since we have found that (8) has 
a unique solution which is analytic around Z = 0 , any 
extraneous solutions must have some singular behavior 
for small Z. 

3. DEPENDENCE ON THE INCIDENT ENERGY 

Perhaps the most striking experimental observation 
is that the number of backscattered electrons and their 
distribution in energy and angle are, over a broad range 
of energies, very nearly independent of the incident 
energy. The first application of our formalism will 
therefore be to investigate the energy dependence of 
R. Since the parameters y and emin appearing in (5) 
are rather poorly known functions of E and Z, our first 
task must be to see if R is sensitive to moderate vari
ations of these parameters. For fast incident electrons 
both y and emin/E are very small numbers, generally 
being on the order of 10~3. In the limit as y and emin 

tend to zero both the elastic and inelastic cross sections 
diverge, but one can easily verify that they have the 
symbolic expansions 

a(E,n'n,) = aT(E)d(n-n,)-e'Z2(2E)-2 

X m ( l / 7 ) 6 ' ( l - i i . n ' ) + 0 ( l ) , (12) 

a)(E,E') = a>T(E)8(E-E')-2TZ(*E-1 

XH2E/I)8'(E-E')+0(1), (13) 

15 L. Landau, J. Phys. 8, 201 (1944). 
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where the symbol 0(1) has been used to denote finite 
terms independent of 7 or emin plus terms which vanish 
as 7 or €min tends to zero and we have used Eq. (6) to 
simplify (13). Referring to Eq. (3) we see that the terms 
proportional to <rT and cor drop out so the dependence 
of R on €min and 7 is only logarithmic. 

Upon inserting the cross sections (4) and (5) into 
Eq. (2), one can verify by a simple change of variables 
that if R(n,E; ri\Ef) is a solution so is \R(n,\E; ri,\Ef) 
where X is any positive number, provided that one 
neglects the energy dependence of the logarithms 
ln( l /7) and \n(2E/I) appearing in (12) and (13). 
When the latter is a good approximation we can apply 
our uniqueness "theorem" which then yields 

R (n ,£; n ' E ' ) « \R (n,\E; n',XE'). (14) 

Physically this means that increasing the incoming 
and outgoing energies in the same proportion will leave 
the whole backscattering process unchanged, except 
for a scaling factor which is precisely that needed to 
keep the integrated coefficient at a constant value. 

While it is reassuring to derive this well verified 
symmetry from theory, it is perhaps more important 
to investigate the conditions under which it is valid. 
To begin with, Eq. (14) does not hold unless we can 
neglect the energy dependence of the logarithms in 
(12) and (13). Roughly speaking, this requires that the 
incident energy be greater than the iT-shell binding 
energy of the scatterer. For carbon the iT-shell energy 
is roughly 300 eV and one finds experimentally that the 
total backscattering coefficient is very nearly constant 
for J E > 5 0 0 eV.2-3 On the other hand, the iT-shell energy 
of silver is about 25 keV and one indeed finds that the 
number of backscattered electrons does not become 
constant until E is on the order of 15 keV.2,3 A second 
breakdown of (14) occurs when the angle of incidence 
is near 90° (Fig. 1). In this case the incoming electrons 
can take full advantage of the forward peak in the 
Rutherford cross section which is extremely sensitive 
to 7. With an incident angle of 80°, Kanter4 has found 
that the energy distribution of electrons backscattered 
from aluminum varies considerably for incident energies 
between 10 and 70 keV even though the iT-shell energy 
of aluminum is on the order of 1.5 keV. Since back-
scattering is largest at grazing incidence, this breakdown 
of (14) for 0^90° will have a disproportionate effect 
when the incident flux is isotropic. Formally, Eq. (14) 
breaks down near 6=90° because hr/ multiplies an 
angular derivative which becomes very large when the 
initial direction is parallel to the surface of the target. 
Finally, if the relativistic cross sections, rather than 
those given by (4) and (5) are used in Eq. (2), one finds 
that the resulting equation has a different dependence 
on the energy variables and (14) no longer holds. Ex
perimentally5 one finds that in the relativistic region 
the backscattering coefficient is not independent of the 

incident energy, but shows a marked decrease from the 
nearly constant nonrelativistic value. 

4. APPROXIMATIONS 

Most theories of electron transport are based on the 
assumption that electrons lose energy continuously 
according to the usual range-energy relationship. This 
is definitely an approximation since energy loss, like 
angular deflection, is a stochastic process. To determine 
the accuracy of this approximation when applied to 
backscattering, we must examine the integrals on the 
left-hand side of Eq. (3). For simplicity, we will con
sider only the first integral and assume that the inte
gration over the angular delta function has already 
been carried out. The inelastic cross section co(E,E") 
is very strongly peaked near E=E", which suggests 
that we change the lower limit of integration from E' 
to zero and, keeping E1 fixed, expand R(n,E"; n',E') 
in a Taylor series around E"=E. The zeroth-order 
term in the expansion is exactly cancelled by the 
b(E—E")aT(E) term and the first integral becomes 

seed" f o^(E,E//)(E-EfVEf,']—R(nJE;n,
JE

f) 

- J s e c J / o>(E,E")(E-E")HE"~\ 

X * ( n , E ; n ' , E , ) + - - - . U5) 

According to (6) the first term in (15) can be written 
as 

dE d 
- sec0 R(n,E; n ' ,E ' ) . 

dx dE 

On the other hand, in the continuous approximation 
the probability of energy loss per unit path length 
co ( £ ; £ ' ) would be 

{dx)-*blE--E'- (dE/dx)dx~]. 

In this case cor is simply (dx)'1, and upon inserting 
these expressions into the first term on the left-hand 
side of (3) and taking the limit dx —> 0, one finds that 
the continuous energy loss approximation is exactly 
equivalent to keeping only the first term in (15). Since 
<a(E,E") is peaked near E=E", the coefficient of the 
first term in (15) will be considerably larger than the 
coefficients of the higher order terms so that dropping 
these terms will be a good approximation unless R is 
so rapidly varying that the higher derivatives are large. 
To estimate these derivatives one must remember that 
we are considering R as a function of E for fixed Er. Ex
perimentally one finds that for low-Z targets, R is a 
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slowly varying function and the approximation should 
be very good but for high-Z targets R changes by an 
order of magnitude between E/E'=\ and E/E' = 2. A 
rough calculation indicates that for Z greater than 
about 40, the second term in (15) can be nearly as 
large as the first. One cannot, therefore, expect a theory 
based on a continuous energy loss to give detailed, 
quantitative results for high-Z materials. This con
clusion is in agreement with Monte Carlo calculations 
carried out by MacCallum,16 who found that calcu
lations based on the usual range-energy relationship 
gave the details of the energy distribution of back-
scattered electrons correctly only for low-Z scatterers. 

The easiest way to incorporate this approximation 
into the present formalism is through Eq. (9). If the 
energy loss is assumed to take place continuously, the 
function P(E,E';tsec6) defined in (10) is obviously 
just a delta function whose argument is determined by 
the range-energy relation which in terms of t is given 
by dE/dt= ~E~l ln(2E/7). If we want our solution to 
obey Eq.^ (14) we must neglect the energy variation of 
the logarithm in which case the range-energy relation 
can be integrated analytically and we find 

P(E,E';t secd) = 2E'5(E*-E'*-Ct seed), (16) 

where C=2ln(2E/I). There is, of course, some ambi
guity in assigning a numerical value to the "constant" 
ln(2E/7). However, one will note that (16) is simply a 
restatement of the Thompson-Whiddington law9 and 
Terrill17 has found that this simplification of the range-
energy relationship is fairly accurate provided that one 
takes C~10. Since one might argue that this value of 
C is not the proper one to use in backscattering prob
lems, it is interesting to observe that C can be deter
mined directly by studying the behavior of R in the 
limit E' —> E. Clearly an electron which has lost very 
little energy cannot have spent enough time in the 
target to have been scattered more than once, which 
means that in the limit E' -> E the first-order term in 
an expansion of R in powers of Z is exact. This term 
can be obtained simply by setting R=0 on the right 
hand side of Eq. (9). 

At this point it is convenient to introduce some 
notation which will be used throughout the rest of this 
section. Since we will be interested only in solutions 
which satisfy Eq. (14), it is advantageous to work with 
the dimensionless function 

r(n,n';$ = Ecosd'R(n,E;n',E'), (17) 

where £=E'/E and the factor cos0' has been added to 
facilitate comparison with experimental data. That r 
is a function only of E'/E follows directly from (14). 

Substituting (16) into Eq. (9) and integrating over 

16 C. MacCallum, Bull. Am. Phys. Soc. 5, 379 (1960). 
17 H. Terrill, Phys. Rev. 22, 101 (1923). 

FIG. 3. Behavior of r for £= 1 and normal incidence. The dots are 
the experimental points of Kulenkamprf and Riittiger (Ref. 6). 

the delta functions, one easily verifies that to order Z 

Z £cos0cos0' 1 
r (n ,n ' ; f ) = — . . (ig) 

4TTC cosfl+S2 cos0; ( l + n - n ' + T ) 2 

Taking C = 10, we find that for £= 1 and 0 = 0 (normal 
incidence) r should behave as shown in Fig. 3. The 
curves are in excellent agreement with the experimental 
points of Kulenkampff and Riittiger.6 One will note 
that in the limit f —> 1 it is not an approximation to 
neglect the energy dependence of the ln(2E/7) term 
in the range-energy relation which means that for £= 1 
Eq. (18) is, within the approximation of continuous 
energy loss, exact and C has the unambiguous value of 
2 ln(2E/I) where E is the incident energy. Since the 
experimental points were taken at 30 keV, this would 
yield an ionization potential 7^400 eV independent of 
Z whereas one usually takes I~ (13.4 eV)Z. This is 
indeed a remarkable occurrence for which there appears 
to be no immediate explanation. 

Recently there have been attempts to explain back-
scattering in terms of a single large-angle scattering.9'10 

Since a theory that includes only a single scattering 
necessarily corresponds to the first term in an expansion 
of R in powers of Z, it must be exact in the limit Z —> 0, 
and one might hope that it would be valid for low-Z 
materials of experimental interest. Further motivation 
for this approach can be found in the fact that for Z 
between 6 and 40 the total backscattering coefficient 
for normal incidence is about 0.013Z which is suggestive 
of a first-order term in Z. However, for 0=0 , Eq. (18) 
yields a total coefficient of [8C]~ 1 [ l - l n2 ]Z+0(Z 2 ) 
which for C = 1 0 is about 0.004Z. Everhart9 has sug
gested treating C as a phenomenological parameter 
which should be adjusted to give the observed back-
scattering. In view of the accuracy with which TerrilPs 
value reproduces the experimental points at £ = 1 this 
is hardly a permissible procedure. Moreover, the energy 
distribution of backscattered electrons predicted by 
(17) is in violent disagreement with experiment so we 
are forced to the conclusion that a single-scattering 
theory is not valid for realistic values of Z. Apparently 
the linear behavior of the total coefficient for low-Z 
materials is accidental. 
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Having found that a theory based on a single large-
angle scattering is not realistic, one might be tempted 
to go to the opposite extreme and use a small-angle 
approximation in which one keeps only the forward 
peak of the cross section. The possibility of constricting 
a quantative theory of this sort is imbedded in what 
is perhaps the most interesting question in backscat-
tering theory: Which is the more important, small- or 
large-angle scattering? One way to answer this question 
is simply to chop off the small-angle part of the Ruther
ford cross section, calculate the resulting backscattering 
coefficient, and compare the results with experiment. 
We have made a number of such calculations by 
iterating Eq. (9) in the continuous energy-loss approxi
mation (16). Other motivations for the calculations 
were the hope that we might obtain quantitative results 
for low-Z targets and to find out if matrix equations 
like (9) are suitable for machine calculations. More 
specifically, we replaced the Rutherford cross section 
[ 1 - C O S © + Y ] - 2 with [ 1 - c o s © ] - 2 e x p [ - & 2 / 
(1-cos©)2] and iterated (9) starting with R=0. As 
long as Z was not large or b too small, the iterates 
converged satisfactorily becoming almost constant 
after about six iterations. However, for large Z or very 
small b satisfactory convergence could be obtained only 
for values of £ close to one. This was due to the fact 
that the matrix SF is the difference between two terms 
which partially cancel each other, and if either SF or 
R becomes too large or rapidly varying, the equation 
becomes numerically unstable. For this reason, the 
method is not practical for applications of the theory 
and it would not be worth while to go into the details. 

Some typical results obtained for 5 = 0.1 are shown 
in Figs. 4 and 5. While the calculated curves lie con
siderably lower than the experimental ones, the results 
are remarkable considering that we have in effect said 
that if an electron is not scattered through an angle 
greater than about 25°, it is not scattered at all. Par
ticularly surprising is the fact that the calculated curve 
for copper is about as close to the experimental one as 
it is for aluminum, even though the atomic number of 
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FIG. 4. Results of the cutoff calculations (dashed line) for normal 
incidence compared with the experimental data (Ref. 6) of 
Kulenkampff and Riittiger (solid line). 

FIG. 5. Results of the cutoff calculations (dashed line) for normal 
incidence compared with the experimental data (Ref. 6) of 
Kulenkampff and Riittiger (solid line). 

copper is over twice that of aluminum. This appeared 
to be a general trend. Our results for carbon and silver 
were percentage wise, in about the same agreement as 
those for copper and aluminum. Apparently the physical 
reason for this is that the increased probability of small 
angle scattering in the higher Z materials is being 
compensated for by the shorter time which a typical 
backscattered electron spends in the target. One will 
also note that the relative discrepancy between the 
calculated and observed curves is larger for 0'=83° 
than for 0'*=43°. This is to be expected since the points 
at #'=83° corresponds to deflection through a smaller 
angle, which is more likely to be effected by small-angle 
scattering. As the cutoff angle was decreased, the calcu
lated points rose towards the experimental values. 
However, the difference between the curves computed 
with cutoffs of 25° and 12° was only about 15% which 
indicates that the bulk of the discrepancy is due to 
scattering at angles well inside the forward peak of the 
Rutherford cross section. The conclusion is that quite 
independently of Z, about half the backscattering 
arises from a relatively small number of large-angle 
scatterings, with the remainder being due to the dif
fusive effects of small-angle scattering. In retrospect, 
this is not a surprising result since the mean-square 
scattering angle is on the order of y so one needs roughly 
7 small-angle scatterings to deflect an electron through 
90°, but about one out of every y collisions will give 
rise to a single scattering through an angle greater than 
90°. 

5. A POSSIBLE METHOD FOR NUMERICAL SOLUTION 

The main result of the previous section was that 
backscattering is a very complicated problem. For one 
thing, we found that both the forward peak of the 
scattering cross section and the details of its large-angle 
tail are important. Also, it appears that for high-Z 
materials one must include the stochastic nature of 
energy loss. For these reasons it seems very doubtful 
that a simplified treatment will ever lead to more than 
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a crude estimate of the total coefficient. Barring the 
appearance of an entirely new formalism, if one wishes 
to make quantitative calculations, he is faced with 
either resorting to the Monte Carlo method or at
tempting a numerical solution of one of the present 
equations. Leaving aside, for the moment, the diffi
culties arising from the peak in the Rutherford cross 
section, let us consider some pertinent properties of 
Eq. (2). 

The factors sec0 appearing in (2) blow up at 0=90°. 
Since the laboratory coefficient R sec0 cos0' is well 
behaved at 6=90° the integrand remains finite. In 
carrying out our cutoff calculations we approximated 
the angular integrals with a Gaussian quadrature 
scheme which avoids the ambiguous points at 6=90° 
and found that these apparent divergences caused no 
difficulty. 

Since the problem has rotational symmetry around 
an axis perpendicular to the target, R(n,E; n',Ef) has 
the property that its average over the azimuthal angle 
of either n or n' is equal to its average over the azimuthal 
angle of both n and n'. Using this property, one readily 
verifies that averaging (2) over the azimuthal angles 
of n and n' yields an equation for the corresponding 
average of R. The resulting equation is still of the 
matrix form (8) and the same techniques can be applied 
to both the full and averaged equations. This procedure 
will greatly reduce the number of points needed to 
carry out the angular integrations. 

Another simplification arises if the solution is required 
to satisfy (14). As one would expect, (2) then becomes 
an equation for the dimensionless function r defined in 
(17) and the number of energy variables is cut in half. 
We have pointed out that R(n,E; n;',£') is independent 
of reflection coefficients whose energy indices are greater 
than E or less than E1 which means that the integral 
equation for r is of the Volterra type as far as the £ 
variable is concerned. One can therefore compute r out 
to some minimum value of £ without having to find the 
function for smaller values of £. The validity of forcing 
R to satisfy (14) is, however, not a priori known. 

The major stumbling block will, of course, be the 
strong forward peak in the Rutherford cross section. 
One will note, however, that the matrix W is also ill 
behaved, but when it was exponentiated to obtain Eq. 
(9) its singular behavior ceased to cause any difficulty. 
The latter equation can be obtained by multiplying (8) 
from both right and left by exp(—Wt), noticing that 
the left-hand side is a total derivative and integrating 
from zero to infinity. More generally, suppose we take 
any matrix function A(f) which has the properties, 
A (0) = / and A (°o) — 0, and carry out the same manipu

lations. One easily verifies that the analog of (9) is then 

Z r00 

R=— / A(t)lSB+B1(t)R+RB2(t) 
8TTJ 0 

+RSBR]A(t)dt, 

&rf d (Z\ "I (19) 
5x(/) = - -A-i(t)-A(t)-W+( — )sF\, 

ZL dt \ 8 x / J 

The game is now to choose A so that the matrices B\ 
and B2 are well behaved. The ideal choice would be 
exp[— (W—Z/8wSF)t}, but from the analog of Eq. 
(11) one finds that the (n,£; n ' ,£ ' ) th element of this 
matrix is the probability that an electron will be 
scattered from the state (n,E) to the state (n'\Ef) while 
passing through a slab of thickness t, provided that 
one only includes scatterings such that the electron is 
always traveling into the target. Evaluating this matrix 
would be as difficult a problem as solving the original 
equation. On the other hand, the theory of small-angle 
multiple scattering18,19 has provided a number of ap
proximate evaluations of this matrix. These approxi
mations are only valid for small-angle deflections, but 
one will note that this is all that is needed to insure 
that B\ and B2 are well behaved. The scheme is, there
fore, to calculate exp[— (W—Z/STSF)^ in some 
tractable small-angle approximation, use this matrix 
for A 00 in (19), and solve the resulting equation by 
iteration starting with R=0. Any reasonable approxi
mation for the above exponential should remove most 
of the small-angle scattering from Bi and B2, and the 
successive iterates should converge like an expansion 
in the number of large-angle scatterings. Our experience 
with the cutoff calculations described in the previous 
section indicate that such a series would converge 
rapidly after about five iterations. Furthermore, any 
iterative solution to (19) is clearly well behaved for 
small Z, so if the iterates converge they are guaranteed 
to yield the correct solution. The author has not 
investigated the above scheme in detail but preliminary 
investigations indicate that it may lead to a practical 
method for obtaining numerical results. 
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